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Point process : definitions

A point process Z is :
@ a random countable set of R, : Z ={T; :i € N}

@ a random point measureon Ry, : Z =} . 0T,
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A point process Z is :
@ a random countable set of R, : Z ={T; :i € N}

@ a random point measureon Ry, : Z =} . 0T,

A process A is the stochastic intensity of Z if :

V0 < a < b,E[Z([a, b])|Fs] = E [/b)\tdt

7|
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Introduction Point process
Ex ility
neural network

Poisson measure

E measurable space
7 Poisson measure on E : random point measure that satisfies

e VA, m(A) is Poisson variable,

e VAi,..., A, disjoint, (m(A1),...,7(A)) independent.

Intensity of 7 : p(A) = E[r(A)]

1 characterizes the law of 7
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Introduction Point process
Exchan lity

Model neural network

Thinning

m Poisson measure on R x R with intensity dt.dz

A predictable and positive process

Z(A) = / Lz<aendn(t, 2)
AXR+

Then : A is the stochastic intensity of Z
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Exchangeable system

Definition
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Basic example : i.i.d. = exchangeable

Theorem (de Finetti's theorem)
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Modeling of neural network

Exchangeable system

Definition

A system of r.v. (Xj)ics is exchangeable if :
for all finite permutation o, ﬁ((X;),‘el) = C((Xa(i))iel)

Basic example : i.i.d. = exchangeable

Theorem (de Finetti's theorem)

Let (Xi)ies infinite and exchangeable. Then there exists a random
measure i such that, conditionally on p the system (X;);c/ is
i.i.d. u—distributed

@ [ IS unique a.s.

@ 1 is the directing measure of (X);¢/
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Modeling in neuroscience

Neural activity = Set of spike times
= Point process (i.e. random set of R )

Spike rate depends on the potential of the neuron

Each spike modifies the potential of the neurons

Network of N neurons :

ZN:i = set of spike times of neuron i
° .
= point process with intensity f(XtAi")
o XN = potential of neuron i
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Introduction Point process
Exchangeability
Modeling of neural network

Modeling in neuroscience

Neural activity = Set of spike times
= Point process (i.e. random set of R )

Spike rate depends on the potential of the neuron
Each spike modifies the potential of the neurons

Network of N neurons :

zZNi set of spike times of neuron |
° .
= point process with intensity f(XtAi")
o XN = potential of neuron i

Here, XN solves an SDE directed by (ZN’j)lggN
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Introduction Point process
Exchangeability
Modeling of neural network

Mean field limit

N—particle system :

° ZN' / / {Z<f(XNr }d7r (5 z)
o dXN: . b(XtN”)dt—i-Z/ uji(t)l{zgf(x’\ﬁj)}dﬂj(t’ Z)

7 iid Poisson measures with intensity dt - dz
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Mean field limit

N—particle system :

t oo
N, . i
° 7, —/0/0 1{z§f(xs“ﬁ’)}d7r (s,2)
. . N 0 .. .
D ) G
j=1 ST

7 iid Poisson measures with intensity dt - dz

Study the limit N — co = rescale the sum :
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Exchangeability
Modeling of neural network

Mean field limit

N—particle system :

t oo
N, . i
° 7, —/0/0 1{z§f(xs“ﬁ’)}d7r (s,2)
. . N 0 .. .
D ) G
j=1 ST

7 iid Poisson measures with intensity dt - dz

Study the limit N — co = rescale the sum :
o linear scaling N~1 (LLN) :
[Delattre et al. (2016)] (Hawkes process, v//(t) = 1),
[Chevallier et al. (2017)] (¢//(t) = w(j,i))
o diffusive scaling N=%/2 (CLT) :
[E. et al. (2019)] random and centered v/i(s)
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Exchangeability
Modeling of neural network

Linear scaling

axV = —axMide+ L N Z/ {Z<f(XNJ)}d7r (t, 2)
J#'

—/0 XtN_’il{ZSf(Xth)}dﬂi(t,Z)

7/ iid Poisson measures with intensity dt - dz

Intepretation :
@ drift : —ax models an exponantial loss of the potential

@ small jump of order N1 : the effect of spike of one neuron to
the potential of the others

@ reset jump : the effet of spike of one neurone to its potential
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Introduction Point process
Exchangeability
Modeling of neural network

Linear scaling

axV = —axMide+ L N Z/ {Z<f(XNJ)}d7r (t, 2)
J#'

—/0 XtN_’il{ZSf(Xth)}dﬂi(t,Z)

7/ iid Poisson measures with intensity dt - dz

Intepretation :
@ drift : —ax models an exponantial loss of the potential

@ small jump of order N1 : the effect of spike of one neuron to
the potential of the others

@ reset jump : the effet of spike of one neurone to its potential

[De Masi et al. (2015)] and [Fournier & Locherbach (2016)]
Generalization to McKean-Vlasov frame [Andreis et al. (2018)]
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Definitions of the systems
Well-posedness of the limit system

Diffusive scaling

N 00
N, N,i 1 j
dXt = *O[Xt dt+\/NJZ_;/O /RU]-{ZSf(XtN’j)}dﬂJ(tjvaI)
J#i

o N,i ;
_/O /RXt 1{Z§f(XtN_’,)}d7r (t,Z, U)

7/ iid Poisson measures with intensity dt - dz - dv(u)
v probability measure on R centered with [; [u]3dv(u) < oo
o? = [ v?dv(u)
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Definitions of the systems
Well-posedness of the limit system

Diffusive scaling

dX" = —ax{"dt+ \FZ/ / U1{z<f XN }dﬁj(t’z’ u)
;él

J
> N,i i
_/O /RXt 1{Z§f(XtN_’,)}d7r (t,Z, U)

7/ iid Poisson measures with intensity dt - dz - dv(u)
v probability measure on R centered with [; [u]3dv(u) < oo

= [ u?dv(u)

Dynamic of XN/ :
° XtN’i = XN ig=alt=9) if the system does not jump in [s, t]
o XN = Xth + ﬁ if a neuron j # i emits a spike at t

° XtN’i = 0 if neuron i emits a spike at t
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Definitions of the systems
Well-posedness of the limit system

Model

Limit system : heuristic (1)

Ni s Nii
dX; aX, dt+T /R+><R ul{ <f(XN7J)}d7T (t,z,u)

J#l

_ XN 1 dr(t
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Well-posedness of the limit system

Model

Limit system : heuristic (1)

Ni s Nii
dX; aX, dt—f—T /R+><]R ul{ <f(XN,)}d7T (t,z,u)

J#l

_ XN 1 dr(t

w3 ),

dX! = — aX/[dt + dM,

—)_(i/ 1 o wdri(t,z,u
A LG, ( )

. J
[0,f] xRy xR z<f(xs’"_u)}d7r (s,z,u)
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Definitions of the systems
Well-posedness of the limit system

Model

Limit system : heuristic (2)

2

M= T / ul j d7rj S,z,U
| m; e P ) S i)
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Definitions of the systems
Well-posedness of the limit system

Model

Limit system : heuristic (2)

N
MN = 1 / U]. . dﬂ"l s,z,u
t \WZ [0,t] xR+ xR {zgf(xsl\/_u)} ( )

M is an integral wrt a BM W
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Model

Limit system : heuristic (2)

w3 ),

M is an mtegral wrt a BM W

dml(s,z,u
[0,t] xR+ xR {zgf(xslv—d)} ( )

(M) = lim (MNY, = lim 02/0 %Z F(XNJ)ds
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Definitions of the systems

Model D .
Well-posedness of the limit system

Limit system : heuristic (2)

w3 ),

M is an mtegral wrt a BM W

S dd
0. R B zgf(XsN_’J)} (s, z,u)

(M) = lim (MNY, = lim 02/0 %Z F(XNJ)ds

Then M should satisfy

_ t
Mt—U/
0

with " N “10%)

== \

25: XJdW_a/\/i
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Well-posedness of the limit system

Model

Limit system : heuristic (3)

Me = o [ /us(f)dWs where ;1 = IiAr;nﬂN
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Definitions of the systems

Model D .
Well-posedness of the limit system

Limit system : heuristic (3)

Me = o [ /us(f)dWs where ;1 = IiAr;nﬂN

dX| = — aX[dt + o\/p:(F)dW;

—)_(i_/ 1 o wdri(t,z,u
A LG, ( )

1 is the limit of empirical measures of ()_(i),>1 exchangeable
by Proposition (7.20) of [Aldous (1983)] 1 is the directing measure
of (X')i>1 (conditionally on g, X' i.i.d.~ )
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Model Definitions of the systems
Well-posedness of the limit system

Limit system : heuristic (3)

Me = o [ /us(f)dWs where ;1 = IiAr;nﬂN

d)_q =— a)?t{dt +o Mt(f)th
_Xi ) e
"~ /R+><R {z<r(xi )y dm(t, 2, u)
1 is the limit of empirical measures of ()_('),>1 exchangeable

by Proposition (7.20) of [Aldous (1983)] 1 is the directing measure
of (X')i>1 (conditionally on g, X' i.i.d.~ )

Conditionally on W, the X’ (i > 1) are i.i.d. B )
by Lemma (2.12) of [Aldous (1983)] u = L(X|W) = L(X|W)
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Model Definitions of the systems
Well-posedness of the limit system

Limit system : heuristic (3)

Me = o [} \/us(f)dWs where j = Ii,\r;nﬁN

dX; = — aX/dt + o\/E [f(X{)|W]dW;
—)_(i_/ 1 o wdr(t,z,u
= R, xR {z=fX)} ( )
1 is the limit of empirical measures of ()‘<i)i21 exchangeable

by Proposition (7.20) of [Aldous (1983)] 1 is the directing measure
of (X")i>1 (conditionally on p, X' i.i.d.~ p)

Conditionally on W, the X' (i > 1) are i.i.d. B )
by Lemma (2.12) of [Aldous (1983)] u = L(X}|W) = L(X'|W)
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Definitions of the systems

Model Well-posedness of the limit system

Well-posedness of the limit equation (1)
dX; = — aX{dt + o\/E [f(X{)|W]dW;

—)_(i_/ 1 o wdr(t,z,u
R, xR {z=FX0)} ( )

Problems :

@ conditional expectation in the Brownian term
(McKean-Vlasov frame)

@ unbounded jumps (non-Lipschitz compensator x — —xf(x))
@ jump term and Brownian term
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Definitions of the systems

Model Well-posedness of the limit system

Well-posedness of the limit equation (1)
dX; = — aX{dt + o\/E [f(X{)|W]dW;

—)_(i_/ 1 o wdr(t,z,u
R, xR {z=FX0)} ( )

Problems :

@ conditional expectation in the Brownian term
(McKean-Vlasov frame)

@ unbounded jumps (non-Lipschitz compensator x — —xf(x))
@ jump term and Brownian term

Solution : consider a : R — R increasing, bounded,
lower-bounded, C? such that

2" (x) = a"(y)| + [a'(x) = '(y)
+xa@'(x) = ya'(y)| + [£(x) = F(y)] < Cla(x) — a(y)]
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Definitions of the systems

Model Well-posedness of the limit system

Well-posedness of the limit equation (2)

a(Xi) =a(X{) - /0 Xid (Xi)ds + o /0 o (X0)\JELF (X)| W] dW,s
o? [t v i
<5 [ KBl wies

+ / 15(0) — a(X( )Lz 1y (5. 2.0)
[0,t] xRy xR s
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Well-posedness of the limit equation (2)

a(Xi) =a(X{) - /0 Xid (Xi)ds + o /0 o (X0)\JELF (X)| W] dW,s
o? [t v i
<5 [ KBl wies

+/i 15(0) — a(X( )Lz 1y (5. 2.0)
[0,t] xRy xR s

To prove trajectorial uniqueness :
o u(t) =E[|a(X!) — a(X!)|] (problem with Brownian term)
o u(t) = E[|a(X!) — a(X))|?] (problem with jump term)

Idea of [Graham (1992)] : u(t) = E | sup |a(X{) — a(X!)|
0<s<t
Ve > 0,u(t) < C(t+Vt)u(t)
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Model Well-posedness of the limit system

Well-posedness of the limit equation (2)

a(Xi) =a(X{) - /0 Xid (Xi)ds + o /0 o (X0)\JELF (X)| W] dW,s
o? [t v i
<5 [ KBl wies

+f [8(0) — (X1, pqzs yy (s, 2, 1)
[0,t] xR+ xR
To prove trajectorial uniqueness :
o u(t) =E[|a(X!) — a(X!)|] (problem with Brownian term)
o u(t) = E[|a(X!) — a(X))|?] (problem with jump term)
Idea of [Graham (1992)] : u(t) = E sup la(X!) — a(X])|
s<t

Vt > 0,u(t) < C(t+ Vt)u(t) = 3t > 0, u(ty) =0
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Definitions of the systems

Model Well-posedness of the limit system

Well-posedness of the limit equation (2)

a(Xi) =a(X{) - /0 Xid (Xi)ds + o /0 o (X0)\JELF (X)| W] dW,s
o? [t v i
<5 [ KBl wies

+f [8(0) — (X1, pqzs yy (s, 2, 1)
[0,t] xR+ xR
To prove trajectorial uniqueness :
o u(t) =E[|a(X!) — a(X!)|] (problem with Brownian term)
o u(t) = E[|a(X!) — a(X))|?] (problem with jump term)

Idea of [Graham (1992)] : u(t) = E | sup |a(X!) — a(X})|
0<s<t

Vt > 0,u(t) < C(t+ Vt)u(t) = 3t > 0, u(ty) =0
Iteratively Vn € N, u(ntg) = 0, whence Vt > 0, u(t) =0
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Definitions of the systems

Model Well-posedness of the limit system

Discussion about the function f

Any f € CL(R,Ry) satisfying f/(x) < C(1 + |x|)~(1*%) (e > 0)
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Definitions of the systems

Model Well-posedness of the limit system

Discussion about the function f

Any f € CL(R,Ry) satisfying f/(x) < C(1 + |x|)~(1*%) (e > 0)
f(x) = ¢ + darctan(« + (x) satisfy the hypothesis

/_/

"Neuron i active / inactive” = " XN X / XN < "

X0
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Definitions of the systems
Well-posedness of the limit system

Simulations of XN:!

4
N =10 N = 1000
sl | 40
2
20 | :
1
0
0
L \—~
o 2 4 6 8 10 o 2 4 6 8 10
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Definitions of the systems

Model Well-posedness of the limit system

Another version of the limit system

The strong limit system :

dX; = — aX/dt + o\/E [f(X{)|W]dW;

—)_(i_/ 1 o wdr(t,z,u
‘ Ry xR {z=fX)} ( )
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Model Well-posedness of the limit system

Another version of the limit system

The strong limit system :

dX; = — aX/dt + o\/E [f(X{)|W]dW;

—)_(i_/ 1 o wdr(t,z,u
‘ R4 xR {z<f(X0} ( )

The weak limit system :
dY! = —aYidt + o/ (F)dW,
- \_/i/ | - dn'(t,z, u)
t Ry xR {z=f(v )} (
where p1; = L£(Y}|p:) is the directing measure of (Y/)i>1
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Definitions of the systems
Well-posedness of the limit system

Model

Equivalence between the two systems

An auxiliary system :

d)N(tN’i =— a)?tN’idt +o
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Definitions of the systems
Well-posedness of the limit system

Model

Equivalence between the two systems

An auxiliary system :

d)N(tN’i =— a)?tN’idt +o

Let un(t) = B [supsc, a( V2) — a(X:")]|

un(t) < C(t + vt)un(t) + CN~Y/2

ps(f) — N~ F(VY)
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Definitions of the systems
Well-posedness of the limit system

Model

Equivalence between the two systems

An auxiliary system :

d)N(tN’i =— a)?tN’idt +o

un(t) < C(t + vt)un(t) + CN~Y/2

ps(f) — N~ F(VY)

For 0 <t < T (small enough)
un(t) < CNY2 — 0
N—o0
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Propagation of chaos

Convergence of (XN'7)<i<n

. ; 1
dxNi = —axNigr 4+ / ul
i ! \/N ; Ry xR { -

— xNi 1 odm(t
t /RMR {z<r)} m(t.2,u)

dXi = — aXjdt + o\/p:(F)dW;

—)_(i_/ 1 o wdmi(t, z,u
= Jopen Hesr G} 20D

Goal : (XN’i)lgigN converges to ()‘(i)i21 in DYV
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Propagation of chaos

Convergence of (XN'7)<i<n

dXi = — aXjdt + o\/p:(F)dW;

—)_(i_/ 1 o wdmi(t, z,u
= Jopen Hesr G} 20D

Goal : (XN’i)lgigN converges to ()‘(i)i21 in DYV

Equivalent condition (Proposition (7.20) of [Aldous (1983)]) :

N = ZJN:1 Sxn. converges to p = L(X|W) in P(D)
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Propagation of chaos

Qutline of the proof

Step 1. (1) is tight on P(D)
Equivalent condition : (XN'1)y is tight on D
Proof : Aldous’ criterion

Step 2. Identifying the limit distribution of (uN)y
Proof : any limit of " is solution of a martingale problem
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Martingale problemp‘
Convergence of (u' )y

Propagation of chaos

Martingale problem : Principle

SDE :
dXy = b(Xt)dt—i-J(Xt)th—f—/ (D(Xt_, U)l{zgf(xt_)}dﬂ(t, z, U)
R+XE
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dXy = b(Xt)dt—i-J(Xt)th—f—/ (D(Xt_, U)l{zgf(xt_)}dﬂ(t, z, U)
R+XE

Martingale problem : for g smooth
t

g(Y:) —g(Yo) — / Lg(Y5)ds is a local martingale,
0

Lg(x) = bx)g'(x) + 50 (xV8"(x) + F(x) /E (&(x + D(x, 1)) — g(x)) dv(u)
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dXy = b(Xt)dt—i-J(Xt)th—f—/ (D(Xt_, U)l{zgf(xt_)}dﬂ(t, z, U)
R+XE

Martingale problem : for g smooth
t

g(Y:) —g(Yo) — / Lg(Y5)ds is a local martingale,
0

Lg(x) = bx)g'(x) + 50 (xV8"(x) + F(x) /E (&(x + D(x, 1)) — g(x)) dv(u)

SDE = martingale Ft>rob|em . Ito's fcirmula
506~ g0%) — [ La0x)ds = [ o) Ox)aW,
0 0

+ /0 /0 /E (8(Xs— + O(Xs—, 1)) — g(Xs2)) 1{Z§f(xs_)}dﬁ'(s, z,u)
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Martingale problemﬂ\
Convergence of (u' )y

Propagation of chaos

Martingale problem : Principle
SDE :
dXy = b(Xt)dt—i-J(Xt)th—f—/ (D(Xt_, U)l{zgf(xt_)}dﬂ(t, z, U)
R+XE

Martingale problem : for g smooth
t

g(Y:) —g(Yo) — / Lg(Y5)ds is a local martingale,
0

Lg(x) = bx)g'(x) + 50 (xV8"(x) + F(x) /E (&(x + D(x, 1)) — g(x)) dv(u)

SDE = martingale Ft>rob|em . Ito's fcirmula
506~ g0%) — [ La0x)ds = [ o) Ox)aW,
0 0
t e’}
[ @0+ 006 ) — () Larie (s 2.0

Martingale problem =- SDE : representation theorems
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Martingale problemp‘

. Convergence of (1" )y
Propagation of chaos CINETE0ER GF (1)

Martingale problem
Given Q € P(P(D)) (Q = L(n))
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Martingale problem

~ N
. Convergence of (1" )y
Propagation of chaos onvergence of (1)

Martingale problem
Given Q € P(P(D)) (Q = L(n))

Canonical space Q := P(D) x D? with w = (i, (Y, Y?)) :
Meaning : (Y, Y2) mixture of iid directed by u
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Martingale problem

~ N
. Convergence of (1" )y
Propagation of chaos onvergence of (1)

Martingale problem
Given Q € P(P(D)) (Q = L(n))

Canonical space Q := P(D) x D? with w = (i, (Y, Y?)) :
Meaning : (Y, Y2) mixture of iid directed by u

P(A x B) := /P(D) La(m)m ® m(B)dQ(m)

Q is solution of (M) if for all g € C2(R?),
g(YE Y?) — gl Yol7 Y02) — fot Lg(us, Y2, Y2)ds is a martingale
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Martingale problem

~ N
. Convergence of (1" )y
Propagation of chaos onvergence of (1)

Martingale problem
Given Q € P(P(D)) (Q = L(n))

Canonical space Q := P(D) x D? with w = (i, (Y, Y?)) :
Meaning : (Y, Y2) mixture of iid directed by u

P(A x B) := /P(D) La(m)m ® m(B)dQ(m)

Q is solution of (M) if for all g € C2(R?),
g(YA Y2 —g(Yd, Y3) - fot Lg(ps, Y2, Y2)ds is a martingale

Lg(m, x', x?) = — ax'01g(x) — ax?dag(x) Z 9? i i8(x
ij=1

+1(x)(g(0,x%) — g(x)) + f(XZ)(g(Xl, 0) —&(x))
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Martingale problem

~ N
. Convergence of (1" )y
Propagation of chaos onvergence of (1)

Uniqueness for the martingale problem

Let Q be a solution of (M). Write Q = L() where 1 is the
directing measure of some exchangeable system (Y')i>1
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Martingale problem

~ N
. Convergence of (1" )y
Propagation of chaos onvergence of (1)

Uniqueness for the martingale problem

Let Q be a solution of (M). Write Q = L() where 1 is the
directing measure of some exchangeable system (Y')i>1

L(i, Y1, Y?) = P (from the martingale problem)
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Martingale problemﬂ\

. Convergence of (1" )y
Propagation of chaos onvergence of (1)

Uniqueness for the martingale problem

Let Q be a solution of (M). Write Q = L() where 1 is the
directing measure of some exchangeable system (Y')i>1

L(i, Y1, Y?) = P (from the martingale problem)

Representation theorems imply (admitted)

Vie {1,2),dVi = — aVidt + /ue(F)dW,

Y. /R+ 1{z§f(\?g;)}d7r (t,z)
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Uniqueness for the martingale problem

Let Q be a solution of (M). Write Q = L() where 1 is the
directing measure of some exchangeable system (Y')i>1

L(i, Y1, Y?) = P (from the martingale problem)

Representation theorems imply (admitted)
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Martingale problemﬂ\

. Convergence of (1" )y
Propagation of chaos onvergence of (1)

Uniqueness for the martingale problem

Let Q be a solution of (M). Write Q = L() where 1 is the
directing measure of some exchangeable system (Y')i>1

L(i, Y1, Y?) = P (from the martingale problem)

Representation theorems imply (admitted)

Vie N* dYi=—aY/dt + \/p:(f)dW;
- Y/ /R+ 1{z§f(\7{7)}d77 (t,2)

Then the law of = £(Y1|W) is uniquely determined

Xavier ERNY Conditonal propagation of chaos
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Martingale problem

N
Propagation of chaos Comaines o (g

Convergence of p" to the solution of (M)

Let u be the limit of (a subsequence of) uM
L(p) is solution of (M) if

for any F of the form

Flm) = [ m e m(d)oa(ra)- () [900) — 6(32)

- / t L<z>(mr,fy,)dr]
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Martingale problem

N
Propagation of chaos Comaines o (g

Convergence of p" to the solution of (M)

Let u be the limit of (a subsequence of) uM
L(p) is solution of (M) if

for any F of the form

Fm) = [ m e m(d))o1(1a)--0u(15) [6036) — 6(12)
D2
+a/ %181<b(%)dr+a/ V7 020 (yr)dr

t

—/VWMMmﬁ)¢(DW—/fwMMﬁmrwwmm
_/ m(f Z (9,1 b (vr) dr}

i,h=1

Xavier ERNY Conditonal propagation of chaos 25/32



Martingale problem

N
Propagation of chaos Gemeagames &ff (2 )y

The expression of F(uN)

F(p") =
L i (e)nn)-0u15) [600) = o)
+ a/t7,181¢(%)dr+ a/tvfazfﬁ(%)df

- [ D602~ e
/ ARG 0) — b(1n))dr

_/ Mr 11 12 (’}’r)dl’

i,= 1
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Martingale problem

N
Propagation of chaos Gemeagames &ff (2 )y

The expression of F(uN)

F(u) =
[ i (e)nn)u1m) [60) = 63
+ a/tvialqb(%)dr + a/tvfazcb(%)df

- [ D602~ e
/ ARG 0) — b(1n))dr
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Martingale problem

N
Propagation of chaos Gemeagames &ff (2 )y

The expression of F(uN)

N2 qul (XA XD ). (X, X)X, X[ = (X, X[

ST Sk
igj=1

t . . . t . . .
o [ XM XMdr + o [ XMia0 (XM, X[ )
S S
t . . . .
= [ A0, X — 60X, X))o
S

_ / OO, 0) — GOXM X)) dr

_ / Z OF 1 d(OX, X[V |

i1,i=1
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Martingale problem

N
Propagation of chaos Comaines o (g

The expression of F(uN)

N2 Zm (XA X (X X [0, X ) = o(X I, X0

S1 0 Sk
ij=1

t i i i t i i .
+a/ X,N”81¢(X,N”,X,’Vd)dr+a/ XM 0,(XMT, XM ) dr
t . . . .
- / FOXM)(6(0, X9 — (XM, X9 )dr
t . . . .
- / FOXNI) (ST 0) — (XM, X)) dr

t1 M . .
-5 | W D (XM Z 02 L, o(XN, XM )dr
s k=1

i1,lh=1
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Martingale problem

N
Propagation of chaos Gemeagames &ff (2 )y

The expression of F(uN)

N2 Zm (XA X (X X [0, X ) = o(X I, X0

st Sk 7
ij=1

t . ) . . . | |
+a/ XM oro(XM, XYY dr + a / XM, (XM, XN )dr
y s
t ) ' . '
= [ R0 X)X X
S
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Martingale problem

N
Propagation of chaos Gemeagames &ff (2 )y

The expression of (/ﬁ(X’VJ, XN,j)

By Ito's formula,
Ep(X" X)) = o(XM, x[) =

t t
E— Oz/ XrN"alﬁb(XrN",Xer’)dr _ a/ X;~N’J82¢(XrN’I,X,N’J)dr
s

S

‘ NiY( Ng Yy N N (u)dr
+[4Wmuw;ﬂw S(X X)) do (1)l

t NI (XN A — (XN XNIYYdy(u)dr
[ OO0 e 0) = (X X))o

t N
[ RO X ) X X d(
S k=1

ki j
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Martingale problem

N
Propagation of chaos Gemeagames &ff (2 )y

Vanishing of E [F(u")]

The reset jump term

u

Nk

‘¢(o, XNY — p(0, XM +
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Martingale problem

N
Propagation of chaos Gemeagames &ff (2 )y

Vanishing of E [F(u")]

The reset jump term

AJ{A,) f; cC—

NJjy _ N.,j
\¢(o,xr ) - (0. XM + "
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Martingale problem

N
Propagation of chaos Gemeagames &ff (2 )y

Vanishing of E [F(u")]

The reset jump term

#(0, XN —<Z>O,XNJ—|——U <C—
‘ (0.%) 0. % \/N) B N
The small jump term

u

VN

u

N,i
N ‘¢(X, T =

7XrN’j + ) - ¢(XrN’ia XrN,j)

2 2
u i ;
—on 2 Ohpe(XMXM)

i1,h=1
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Martingale problcmN
Propagation of chaos Comaines o (g

Vanishing of E [F(u")]

The reset jump term

‘¢(o,xr”d') — (0, XM +
The small jump term

N ‘cb(XrN” + ﬁ XNJ 4 ﬁ) — (XN, XN

2
u i i j
*ﬁz /1¢(XN XN’J 2N Z 8/1 i» XN’aXrN’J)

=1 i1,ih=1
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The reset jump term
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Martingale problem

N
Propagation of chaos Comaines o (g

Vanishing of E [F(u")]

The reset jump term

‘¢(o,xr”d') — (0, XM +
The small jump term

N ‘cb(XrN” + ﬁ XNJ 4 ﬁ) — (XN, XN

2
u i i j
*ﬁz /1¢(XN XN’J N Z 8/1 i» XN’aXrN’J)

h=1 i1,i=1
< CNﬂ = CN~Y/2|y)?
NvN
CN"V2>E [F(MN)} —s E[F()] =0
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Martingale problem

N
Propagation of chaos Gemeagames &ff (2 )y

Convergence of (uN)y

. . 1 .
dXN’I = —OéXN’Idt“_ v / ul i dm t,z,u
A DBy A D

- X 1 i d (¢
" /RM]R {z<r)} 7' (t,z,u)

dXi = — aXjdt + o\/p:(F)dW;

)?i_/ 1 o ndri(t,z,u
E s Mmoo 620
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Martingale problem
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Propagation of chaos Gemeagames &ff (2 )y

Convergence of (uN)y

. . 1 .
dXN’I = —OéXN’Idt“_ v / ul i dm t,z,u
A DBy A D

- X 1 i d (¢
" /RM]R {z<r)} 7' (t,z,u)

dXi = — aXjdt + o\/p:(F)dW;
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E s Mmoo 620

o (uM)y is tight on P(D)
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. . 1 .
dXN’I = —OéXN’Idt“_ v / ul i dm t,z,u
A DBy A D

- X 1 i d (¢
" /RM]R {z<r)} 7' (t,z,u)

dXi = — aXjdt + o\/p:(F)dW;

)?i_/ 1 o ndri(t,z,u
= Ji g ez} 02 0)
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Martingale problem

N
Propagation of chaos Comaines o (g

Convergence of (uN)y

. . 1 .
dXN’I = —OéXN’Idt“_ v / ul i dm t,z,u
A DBy A D

- X0 1 ) i
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d)_Q' =— a)?tidt + U\/det
)_(i_/ 1 o dﬂ'i tzu
e Jo o Hesrx}p T (B2 0)
o (NN)N is tight on ’P(D)

@ let u be the limit of a converging subsequence
@ L(u) is the unique solution of (M)
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Martingale problem

N
Propagation of chaos Comaines o (g

Convergence of (uN)y

. . 1 .
dXN’I = —OéXN’Idt“_ v / ul i dm t,z,u
A DBy A D

- X2 1 , i
- /RMR {ng(xt’v—")}mr (t,2,u)
dX! = — aX]dt + o/ 1e(F)dW;

)?i_/ 1 o ndri(t,z,u
= Ji g ez} 02 0)

o (uM)y is tight on P(D)

@ let u be the limit of a converging subsequence
@ L(u) is the unique solution of (M)

o ;1= L(XW) is the only limit of (u")y
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Thank you for your attention !

Questions ?
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